A Convergent, Highly Stereoselective Synthesis of a C-11-C-21 Subunit of the Macbecins

James A. Marshall* and Richard Sedrani

Department of Chemiary **and** *Biochemistry, The University of South Carolina, Columbia, South Carolina 29208 Received June 26, 1991*

Summary: Acetonide **20,** a possible synthetic precursor of the macbecins, was prepared by a highly stereoselective route from the enantiomeric methyl 3-hydroxy-2 methylpropionates. A key step involved anti S_N^2 addition of Me2Cu(CN)Li2 to vinyloxirane **15** to effect stereoselective introduction of the allylic CH₃ center and the *E*trisubstituted double bond.

Macbecin I and related ansamycin natural products exhibit broad-spectrum antibiotic, antiviral, and antitumor activity. 12 In connection with a program on the synthesis of such compounds, we initiated studies on the S_N2' addition of organocopper reagents to acyclic vinyloxiranes such as I^3 Our findings indicated that these reactions proceed with good to excellent anti stereochemistry, depending on the nature of the cuprate and the R^2 substituent in I.^{4,5} The present work was aimed at a total synthesis of the C-11 to C-21 subunit of the macbecins by a route in which the common $C-13-C-17$ array would be assembled through application of this technology.

The key vinyloxirane intermediate **15** (or **16)** was prepared through Homer-Emmons coupling of epoxy aldehyde IIP with keto phosphonate **13.** The latter was syn-

thesized according to Scheme I **starting** from the reduction product 1 of the t-BuPh₂Si (TBDPS) derivative of (R) methyl **3-hydroxy-2-methylpropionate.** Homologation by cyanide displacement on meaylate **2,** followed **by** reduction and hydrolysis, afforded the aldehyde **4,** which was directly subjected, without purification, to Wittig condensation

then reduction to allylic alcohol **6** in 75% yield based on nitrile **3.** Sharpless epoxidation of allylic alcohol **6** at **-30** OC yielded epoxy alcohol **7** as a **955** mixture of diastereoisomers.⁶

After some trials with several procedures we developed an efficient conversion of epoxy alcohol **7** to the allylic ether **10** by sequential treatment of the derived iodide **8** with n-BuLi and $(MeO)_2SO_2$.⁷ An alternative two-step procedure involving treatment of the alcohol **9** with NaH, THF-DMF, and then MeI led only to desilylated material.⁸

Ozonolysis of allylic ether **10** followed by reductive workup (Me2S) afforded aldehyde **11** in only **30%** yield. Furthermore, addition of dimethyl (lithiomethyl) phosphonate to aldehyde **11** then Dess-Martin oxidation led to keto phosphonate **13** in only 12% yield? In view of these unpromising results we explored methodology for the efficient conversion of allylic ether **10** to the ester **12.** Attempts at oxidation of aldehyde **11** to the acid with a variety of reagents were unpromising. In searching for alternative oxidizing agents we came upon a report by Djerassi describing the conversion of steroidal aldehydes to esters, in moderate yield, by the action of ozone in methanolic KOH.¹⁰ Reasoning that the primary ozonide of allylic ether **10** could give rise to aldehyde and/or a hydroperoxy mixed acetal in situ and that each of these intermediates could lead to the ester by an analogous process, we examined the ozonolysis of **10** in KOH-MeOH with $CH₂Cl₂$ as a convenient cosolvent. As predicted, the **ester 12** was thereby produced in a remarkable **98%** yield. Judging from the spectral characteristics of subsequent products, no epimerization of ester **12** occurred despite the alkaline reaction conditions. Addition of dimethyl (lithiomethy1)phosphonate to ester **12** afforded the keto phosphonate **13** in 78% yield.

Horner-Emmons condensation of keto phosphonate 13 with epoxy aldehyde I11 proceeded readily to afford the enone **14** in 80% yield. Chelation-controlled reduction of the ketonic grouping with $Zn(BH_4)$ ₂ gave the desired alcohol 15 with >20:1 diastereoselectivity.¹¹ Unfortunately, the Lewis acidic Zn salts cause partial decomposition of the sensitive vinyloxirane function. With less acidic reducing agents (DIBAH, NaBH,) the yield of alcohol **was >90%** but disastereoselectivity was quite low.

Treatment of vinyloxirane 15 with Me₂CuLi or MeCu-(CN)Li under conditions previously employed for $I \rightarrow II$ $(R^2 = H)$ led only to recovered starting material.⁵ Surprisingly, the higher order cuprate, $Me₂ \tilde{C}u(CN)Li₂,¹²$ gave the best results with vinyloxirane **15** affording over **60%** of an 11:1 mixture of S_N^2 product 17 and S_N^2 product along with 8% of 1,3-diene product.¹³ In the model system

(11) Gender, W. J.; Johnson, F.; Sloan, A. D. B. *J. Am. Chem.* **SOC. 1960, 82, 6074.**

(13) Thii product may arise through elimination of the inbrmedirb Cu(III) adduct with concommitant lcaa **of the neighboring OH grouping.**

⁽¹⁾ Tanida, S.; Hasegawa, T.; Higashide, E. J. Antibiot. 1980, 33, 199.
Muroi, M.; Izawa, M.; Kasai, Y.; Asai, M. J. Antibiot. 1980, 33, 205.
Muroi, M.; Haibara, K.; Asai, M.; Kamiya, K.; Kishi, T. Tetrahedron **1981,37, 1123.**

⁽²⁾ For previous synthetic studies see: (a) Baker, R.; Cummings, W. J.; Hayes, J. F.; Kumar, A. J. Chem. Soc., Chem. Commun. 1986, 1237. Baker, R.; Castro, J. L. J. Chem. Soc., Perkin Trans. 1989, 199. Total synthesis of *Lett.* **1990,91,4301. Formal synthesis of (a): Coutta, 5. J.; Kallmerten,** Lett. 1990, 31, 4301. Formal synthesis of (±): Coutts, S. J.; Kallmer
J. Tetrahedron Lett. 1990, 31, 4305.
J. Tetrahedron Lett. 1990, 31, 4305.
(3) Marshall, J. A. Chem. Rev. 1989, 89, 1503.
(4) Marshall, J. A.; Blough, B.

⁽⁶⁾ Hanson, R. M.; Sharplea, K. B. *J. Org. Chem.* **1986,61, 1922. (7) Alternative methodology involving tallwideinduced reductionelimination of epoxy mesylates has recently been reported. Discordia,**
R. P.; Murphy, C. K.; Dittmer, D. C. *Tetrahedron Lett*. **1990,** 31, 5603.

We thank Professor Dittmer for a preprint of this paper.

(8) Cf. Shekhani, M. S.; Khan, K. M.; Mahmood, K.; Shah, P. M.; Malik, S. Tetrahedron Lett. 1990, 31, 1669.

(9) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48,

^{1978,1627.}

⁽¹²⁾ Cf. Lipschutz, B. H. *Syntheeia* **1987,326.**

 ${}^aR^1 = t$ -BuPh₂Si.

I (\mathbb{R}^1 = Me, \mathbb{R}^2 = H, \mathbb{R}^3 = CH₂OMOM), this cuprate yielded a $62:38$ mixture of $S_N2:S_N2$ products and no 1,3diene.⁴

Differentiation of the two secondary alcohol groupings of diol **17 was** achieved by selective hydrolysis of the primary TBS ether followed by formation of the cyclic acetonide **19.** 0-Methylation of **19** led to the macbecin I subunit **20.**

As an alternative route to **20** we examined cuprate additions to the methyl ether **16.** Treatment of **16** with the higher order cuprate Me₂Cu(CN)Li₂, as for 15, gave only the diene resulting from elimination, a result consistent with our earlier studies.^{4,13} With Me₂CuLi, a mixture of S_N^2 , S_N^2 , and elimination product was obtained. The use of MeCu(CN)Li in the presence of BF_3 OEt₂ proved successful, leading to a 20:1 mixture of $S_N^2 S_N^2$ products in 70% yield.¹⁴ The S_N2' product 21 was converted to the cyclic acetonide **23 as** described for **17.** Surprisingly, the acetonides **(20** and **23)** prepared by the two routes were found to be isomers by comparison of their spectra. The ¹³C NMR spectrum of each showed vinyl CH₃ peaks near 15 ppm indicative of an E double bond.¹⁵ Accordingly, the two were surmised to be epimeric at the $CH₃$ -substituted allylic stereocenter.

 $(MeO)_2SO_2$
(87%)

Assignment of this stereocenter in alcohol **19** could **be** made by ozonolysis-reduction and conversion of **the** diol **²⁴**to the cyclic acetonide **27.** The **'H** NMR coupling constants confirmed the structure **as** shown. Ozonolysis of the methyl ether **20** followed by reduction yielded alcohol 25. As expected, the corresponding alcohol 26 from ether **23** waa isomeric with **25.** Thus, cuprate addition to

⁽¹⁴⁾ Cf. Ibuh, T.; Nakro, T.; Nirhii, S.; Yamamoto, Y. *J. Am. Chem.*

Soe. 1986,108,1420. (15) &vi, B. N.; Faulkner, D. J. *J. Or#. Chem.* **1@78,43, 2127.**

the OH-substituted vinyloxirane **15** proceeds with high anti selectivity, whereas addition to the methyl ether **16** is highly **syn** selective. Previous studies with **TBS** and MTM ether prototypes of **16** showed moderate to excellent preferences for anti addition.' It is not clear at this point if the methoxy substituent, the use of BF_3 . OEt₂, or some conformational factor is responsible for the ususual syn selectivity observed for **16.**

To explore the possibility of using acetonide **20 as** a synthetic precursor of the macbecins, we prepared aldehyde **29** by silyl ether cleavage and Dess-Martin oxidation? Addition of PhzCuLi to **29** yielded a separable **5.51** mixture of diastereomers favoring the Cram-Felkin-Ahn adduct 30. The stereochemistry of this alcohol, ascertained by ¹H NMR analysis of the O-methyl mandelates,¹⁶ is that

required for elaboration to the macbecin family of natural products.¹⁷ Therefore, by using an analogous cuprate Therefore, by using an analogous cuprate

derived from the aryl subunit described by Kallmerten^{2b} in his recent synthesis, it should be possible to convert aldehyde **29** to macbecin I along the route previously employed by Baker, et al.^{2a}

Acknowledgment. This work was supported by a research grant (CHE-8912745) from the National Science Foundation.

$Articles$

Medium and Structure Effects on the Anodic Oxidation of Aryl Arylmethyl Sulfides

Enrico Baciocchi,*,[†] Cesare Rol,[†] Emanuela Scamosci,[†] and Giovanni V. Sebastiani[†]

Dipartimento di Chimica, Universitd di Roma, F'iarrale A. Moro, 00186 Roma, Italy, and Dipartimento di Chimica, Universitd di Perugia, Via Eke di Sotto, 06100 Perugia, Italy

Received August 21,1990

The anodic oxidation of a number of $XC_6H_4CH_2SG_6H_4Y$ has been investigated under a variety of conditions $(ACOH/ACO^-, ACOH/NO_3^-, ACOH/ClO_4^-, CH_3CN/ClO_4^-)$ and the relative weight of the various reaction paths available to the intermediate radical cation (C_a-H deprotonation, C-S bond cleavage, attack on sulfur) evaluated via product analysis. It has been observed that in AcOH/AcO- (presence of a strong base) the main reaction is C_a-H deprotonation, which is also favored when X is an electron-withdrawing substituent and depressed by electron-donating Y. The C-S bond cleavage reaction is particularly important in CH_3CN/ClO_4^- ; its relative contribution **is** enhanced by an electron-donating **X,** which *makes* the benzyl carbocation more stable. The **pathway** leading to sulfoxides is favored in AcOH/NO₃⁻ and, to a lesser extent, in AcOH/ClO₄⁻. Formation of sulfoxide is **also** favored when Y is **an** electron-donating group.

In the last few years there **has** been increasing concern with the role of electron-transfer (ET) processes in organic reactions.' Radical ions have been suggested **as** critical intermediates in a great variety of processes, and moreover,

[†] Universită di Roma.
[‡] Universită di Perugia.

*^t*UniversitA di Perugia. (1) Eberson, L. *Electron Transfer* Reaction *in* **Organic** *Chemistry;* Springer-Verlag: Berlin, *1987.*

⁽¹⁶⁾ Trost, B. M.; Belletire, J. L.; **Godleski,** S.; McDougal, P. G.; Balkovec, J. M.; Baldwin, J. J.; Christy, M. E.; Ponticello, G. S.; **Varga,** S. L.; Springer, J. D. J. *Org. Chem. 1986,51, 2370.*

⁽¹⁷⁾ Satisfactory **Et, 'H NMR,** and mass spectra/or combustion analyses have been obtained for *all* previously **unknown** synthetic intermediates.